The effect of causeway construction on seagrass meadows in the Western Pacific ? a lesson from the ancient city of Nan Madol, Madolenihmw, Pohnpei, FSM

Author:

Coles Rob,McKenzie Lel,Campbell Stuart,Yoshida Rudi,Edward Ahser,Short Fred

Abstract

Two seagrass meadow sites were chosen at Nan Madal adjacent to the now permeable remnants of an ancient causeway constructed 500 to 700 years ago: one immedlately on the shoreward side of the causeway, and one immediately on the seaward side. The shoreward site had greater seagrass cover, canopy height, algal abundance, and epiphyte abundance and lower species diversity (both seagrass and macro-algae), as well as muddier sediments than the seaward site. The abundance of associated fauna did not appear to differ between sites, although the composition of the faunal communities was different. On the seaward site, average epiphyte cover was less than onetenth the epiphyte cover of that on the shoreward side. Halimeda species were the most common algae on the seaward side, while on the shoreward side Hypnea species were dominant. Cymodocea rotundata was the dominant seagrass species (54% of seagrass cover) on the seaward site, but was absent on the shoreward site, which was dominated by Thalassia hemprichii (84%) and Enhalus acoroides (16%). There was no difference in salinity between the two sites. Sediments had a higher proportion of fine mud shoreward. The beche-de-mer, Holothuria atra, was common on the seaward side of the causeway, but not on the shoreward side. The causeway is open to water flow at all tide heights and does not appear to influence water height in any way. The effects of even this simple permeable barrier on seagrass meadows are evident and include differences in seagrass species, algal species, and fauna. We discuss the management lesson from this historic location for present-day Pacific island causeway developments.

Publisher

CSIRO Publishing

Subject

Nature and Landscape Conservation,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3