Structure Correlation Study of the Beckmann Rearrangement: X-ray Structural Analysis and 13C–13C 1-Bond Coupling Constant Study of a Range of Cyclohexanone Oxime Derivatives

Author:

Yeoh Shin Dee,Harris Benjamin L.,Simons Tristan J.,White Jonathan M.

Abstract

The X-ray structures of a range of oxime derivatives (1 and 4), of cyclohexanone and 4-tert-butylcyclohexanone, where the electron demand of the oxygenated substituent on the oxime nitrogen (OR) is systematically varied were determined. It was established that as the OR group becomes more electron demanding, then the N–OR bond distance increases, consistent with the early stages of bond breakage. Concomitant with this structural effect was a noticeable closing up of the N1–C1–C2 bond angle, consistent with the early stages of migration of the antiperiplanar carbon onto the nitrogen substituent. These structural effects are consistent with the manifestation of the early stages of the Beckmann rearrangement in the ground state structures of these oxime derivatives. The carbon–carbon bond distances of the participating carbons in this rearrangement, however, did not vary in a systematic way with the electron demand of the OR substituent, suggesting that the structural effects are too small to be detected using X-ray crystallography. However, the 13C–13C 1-bond coupling constants, which are sensitive to the effects of hyperconjugation, were shown to vary in a systematic way with the electron demand of the OR substituent. Structural effects in the oxime 5 derivatives of 2,2-dimethylcyclohexanone, a substrate that is prone to Beckmann fragmentation rather than Beckmann rearrangement, were similar but smaller in magnitude.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3