Detection and characterisation of novel fungal endophyte genotypic variation in cultivars of perennial ryegrass (Lolium perenne L.)

Author:

van Zijll de Jong E.,Dobrowolski M. P.,Sandford A.,Smith K. F.,Willocks M. J.,Spangenberg G. C.,Forster J. W.

Abstract

Alkaloids produced by the perennial ryegrass pasture and turf grass endophyte Neotyphodium lolii confer both beneficial (insect feeding deterrence) and deleterious (mammalian herbivore toxicoses) effects. Novel endophyte strains with altered and desirable in planta metabolic profiles have been introduced into cultivars by inoculation. The potentially severe effects of contamination with standard toxic endophytes provide an important incentive for quality control during varietal development. Genotyping with expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers in order to monitor endophyte content was evaluated in this study. The NEA2 endophyte, described as producing low levels of lolitrem B and moderate quantities of ergovaline and peramine, has been deployed in the cultivar (cv.) Tolosa and transferred to other proprietary varieties by crossing or controlled inoculation. In planta genotypic analysis of cv. Tolosa-derived plants revealed the presence of 2 distinct NEA2 genotypes (A and B). Variable proportions of NEA2 A and B were observed at different stages of cultivar multiplication, and NEA2 B was present in inoculated varieties. Several accessions also revealed the presence of a third genotype (C), identical to standard toxic types. Alkaloid measurement in plants containing individual A and B endophytes identified distinct profiles which collectively account for the average NEA2 profile. The C variant is apparently a contaminant arising from seed or adventitious seedlings during varietal multiplication or incomplete removal of endophyte from seed before inoculation. SSR-based genotyping provides an efficient means to continuously assess endophyte prevalence and identity in pasture grass breeding programs.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3