Tolerance of two perennial grasses to toxic levels of Ni2+

Author:

Kopittke Peter. M.,Asher Colin. J.,Blamey F. Pax. C.,Menzies Neal. W.

Abstract

Environmental context. Nickel (Ni) may be present in soil at phytotoxic levels as a result of weathering of ultramafic (serpentine) minerals or activities such as mining and metal ore processing. We assessed the tolerance of two grasses to excess Ni and used electron microscopy to examine the distribution of the Ni within the root tissue. This study provides information on the influence of excess Ni on the growth of these two grasses with consideration to their suitability for the revegetation of areas contaminated with Ni. Abstract. Toxic effects of Nickel (Ni) in solution were evaluated in signal grass and Rhodes grass, two species commonly used for the revegetation of contaminated sites in the tropics and sub-tropics. Both grasses had a similar response to Ni, a Ni2+ activity ({Ni2+}) of 14 × 10–6 M, which reduced the fresh mass by 50%. The sub-cellular distribution of Ni in the roots was similar for both species, with Ni accumulating primarily as particles <5 nm in the vacuoles of rhizodermal and outer cortical cells. The reduction in growth at elevated {Ni2+} caused a loss of apical dominance in the roots and a Ni-induced Fe deficiency in the shoots. Root hair growth was not reduced by Ni2+ toxicity and was prolific even at the highest {Ni2+} (35 × 10–6 M). The translocation of Ni to the plant tops of both grasses resulted in concentrations that exceeded the guidelines for Ni toxicity to grazing animals (100 μg g–1) when grown with ≥11 × 10–6 M {Ni2+} in solution.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3