Deposition and dissolution of metal sulfide layers at the Hg electrode surface in seawater electrolyte conditions

Author:

Milanović Ivana,Krznarić Damir,Bura-Nakić Elvira,Ciglenečki Irena

Abstract

Environmental context The electrochemical detection of many sulfur compounds in natural waters is based on the deposition of a HgS layer at the Hg electrode. In samples containing metal ions in excess of sulfide species, electrochemical exchange reactions between the HgS and the metal ion produce metal-sulfide voltammetric peaks. These peaks can easily be misinterpreted as dissolved sulfide species, and hence do not reflect the bulk state of the solution. Abstract Cyclic voltammetry on a Hg electrode was used to investigate the influence of metal ion (Zn, Cd, Cu, Fe, Pb, Co) on HgS deposition–dissolution in seawater conditions. Due to the exchange of electrons between Hg2+ from a HgS layer and free metal (M2+) from the solution (HgSlayer + M2+ + 2e– ↔ MSlayer + Hg0), the Hg electrode becomes the site for surface metal sulfide (MS) formation. The exchange reaction is reversible, and the surface-formed MS layer reduces at a more negative potential than HgS (MSlayer + 2e– + H+ → M0 + HS). The potentials of both electrode reactions, and the formation and reduction of the MS layer, are determined by the MS solubility product. In solutions containing excess of the free metal ions in comparison to the free sulfide, the exchange reaction produces MS voltammetric peaks, which can be misrepresented for the dissolved sulfide species. This research indirectly confirmed that the FeS electrochemical signal, usually recorded in an iron- and sulfide-rich environment at ~–1.1V v. Ag/AgCl, is not due to FeS reduction. The connection between the studied MS reduction peak potentials and the solubility products shows that the FeS layer formed by an electrochemical exchange reaction with HgS should be reduced at the Hg surface ~100mV more negative than free Fe2+.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3