Observation of 13C rearrangement in [13C2]biphenylene formed from benzyne on pyrolysis of [1,6-13C2]phthalic anhydride and [2a,3-13C2]benzocyclobutenedione

Author:

Barry M,Brown RFC,Eastwood FW,Gunawardana DA,Vogel C

Abstract

Examination of [13C2]biphenylene formed by gas phase pyrolysis of doubly labelled benzyne precursors shows that the principal pyrolytic process leads to overall 1,2→1,3 rearrangement of the C6H4 carbon skeleton either in an intermediate C7H4O before decarbonylation or in benzyne itself. A minor process involves an apparent 1,3-hydrogen shift. [1,2-13C2]Ethyne-1,2-diylbistrimethylsilane was acylated with 3-(2,5-dihydro-1,1-dioxothien- 2-yl)propanoyl chloride and the resulting ketone was desilylated to yield 5-(2,5-dihydro-1,l-dioxo-thien-2-yl)[1,2-13C2]pent-1-yn-3-one. Thermal elimination of sulfur dioxide and cyclization followed by dehydrogenation yielded [7,7a-13C2]-2,3-dihydro-1H-inden-1-one which was oxidized and dehydrated to give [3a,4-13C2]isobenzofuran-1,3-dione. This doubly labelled phthalic anhydride was diluted to approximately 5% 13C2 and the resulting material was converted via benzenediazonium- 2-carboxylate into biphenylene at 84�, and pyrolysed at 830� to yield biphenylene, and a sample diluted to 7.5% was converted into [2a,3-13C2]benzocyclobutenedione which was pyrolysed at 650�, 750� and 830� to yield further samples of biphenylene. The biphenylene samples were examined by mass spectrometry at 20 eV to determine their isotopic composition and by 13C n.m.r. spectroscopy to determine the distribution of labelling.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3