Female and male costs of reproduction must be equal in dioecious Cape plant genus Leucadendron (Proteaceae)

Author:

Midgley Jeremy J.,West Adam G.,Cramer Michael D.

Abstract

The Cape Leucadendron genus is dioecious, with extreme vegetative dimorphism displayed in some species – females having much larger leaves and fewer branches than males – whereas other species are monomorphic. Leucadendron is ecologically diverse, with some species with canopy stored seeds (serotiny) and others with soil stored seeds. These features mean that the Cape Leucadendron is an ideal genus to study the costs of reproduction for the different sexes in plants, and to determine whether vegetative dimorphism could be due to unequal costs. Here we use the unique aspects of the fire-prone Cape environment in which leucadendrons occur to show that the costs of sex must be equal between the sexes. Leucadendron populations are single aged because they only recruit after fires that kill all adults. Therefore, because the sexes have the same lifespans, they must have the same lifetime extent of vegetative versus reproductive allocation. Also, ecologically similar hermaphrodite Proteaceae co-exist with dioecious taxa. To co-occur, dioecious and hermaphrodite taxa must have the same mean post-fire fitness. This implies that dioecious females must have double the reproductive output that a co-occurring hermaphrodite has. This is only possible if the costs of reproduction are the same for the sexes and that the sexes use the same resources for reproduction. Finally, because males and female co-occur, they must be competitively equivalent to maintain natal sex ratios. These three factors suggest male and female allocate equivalently and therefore that vegetative sexual dimorphism is unlikely to be due to differences in allocation.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3