Decomposition of plant material in Australian soils .IV. Decomposition in situ of 14C labeled and 15N labeled legume and wheat materials in a range of southern Australian soils

Author:

Amato M,Ladd JN,Ellington A,Ford G,Mahoney JE,Taylor AC,Walsgott D

Abstract

14C- and 15N-labelled wheat straw, and tops or roots of a pasture legume (either Medicago littoralis or Trifolium subterraneum) were incorporated into topsoils at 12 field sites in southern Australia. These sites were representative of soil types widely used for wheat growing in each region. The soils varied markedly in their physical and chemical properties (e.g. pH, texture and organic matter content). Based on amounts of residual I4C (averaged for all sites), the legume tops decomposed more extensively than did wheat straw, especially soon after incorporation. To a lesser extent the legume tops decomposed more extensively than legume roots, and T. subterraneum tops more than M. littoralis tops; root decomposition for both legumes was similar. For example, after 1 year, the residual organic 14C from wheat straw, M. littoralis tops, T. subterraneum tops and legume roots accounted for 48%, 41%, 38% and 54% of their respective inputs. After two years, residual 14C of wheat straw accounted for 30% of the input. Differences in decomposition due to climate and soil properties were generally small, but at times were statistically significant; these differences related positively with rainfall and negatively with soil clay content, but showed no relationship with pH or soil organic C and N. Some N was mineralized from all plant materials, the greatest from legume tops, the least from wheat straw. After 1 year, residual organic 15N accounted for 56%, 63% and 78% respectively of input l5N from legume tops and roots and from wheat straw. The influence of climate and soil properties on amounts of residual organic I5N was small and generally was consistent with those found for residual 14C. AS an exception, the residual organic 15N from wheat straw was negatively related to soil organic N levels, whereas residual I5N of legume tops and roots and residual 14C of all plant materials were not influenced by soil organic matter levels. These results are discussed in terms of the turnover of N in soils amended with isotope labelled plant materials of different available C:N ratios.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3