The phosphatidylinositol signalling system in elongating bovine blastocysts; formation of phosphoinositides, inositol phosphates and stimulation by growth factors

Author:

Hynes A. C.,Sreenan J. M.,Kane M. T.

Abstract

The uptake of myo-inositol and its incorporation into the phosphoinositides and inositol phosphates of the phosphatidylinositol (PtdIns) signal transduction system by in vivo elongating cattle blastocysts was investigated using [3H]myo-inositol. Uptake was examined in 13-, 14- and 16-day-old blastocysts and was largely sodium-dependent throughout (P<0.001), indicating the presence of a sodium-dependent inositol transporter. Incorporation of inositol into the three phosphoinositides, PtdIns, PtdInsP and PtdInsP2, and the inositol phosphates of the phosphatidylinositol signal transduction system was examined at Days 14 and 16; incorporation into the three phosphoinositides and into the inositol phosphate species, InsP1, InsP2, InsP3 (including the second messenger, Ins(1,4,5)P3) and InsP4 was detected in both blastocyst stages. The effects of the peptide growth factor, epidermal growth factor (EGF), and the lipid growth factors, lysophosphatidic acid (LPA) and platelet activating factor (PAF), on the activity of the phosphatidylinositol signalling system in 14- and 16-day-old blastocysts were examined. All growth factors significantly stimulated phosphatidylinositol signalling activity. Epidermal growth factor was stimulatory (P<0.001) only in 16-day-old blastocysts, whereas LPA and PAF were active in both 14- (P<0.005 for LPA and P<0.001 for PAF) and 16-day-old blastocysts (P<0.001 for LPA and PAF). These results indicate that the phosphatidylinositol signalling system is present in cattle blastocysts at the elongation stage and is responsive to stimulation by growth factors.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3