Simulated sheep urine causes the formation of acidic subsurface layers in soil under field conditions

Author:

Condon Jason R.ORCID,Black A. Scott,Conyers Mark K.ORCID

Abstract

This study aimed to ascertain whether application of sheep urine led to the development of acidic subsurface layers of a pasture soil. Deionised water or simulated urine solution delivering urea-nitrogen (N) at 44.8 g m–2 and potassium at 25 g m–2 was applied to soil in either winter or spring. Treatments were applied to the soil surface within 10.3 cm internal diameter PVC tubes inserted 20 cm into the soil either under ryegrass or kept bare. Main sampling times corresponded to the completion of various soil N transformations as determined by periodic sampling. Main samplings involved the collection of above ground plant material and soil sampling in 2 cm depth increments in 0–10 cm and 5 cm intervals in 10–20 cm depths. Following treatment application, urea and ammonium-N moved to a depth no greater than 20 cm but the extent of movement was greater in winter than spring due to the influence of initial soil moisture. Following urea hydrolysis, soil pH increased in the 0–15 cm depth. Subsequent nitrification significantly acidified soil under pasture by 0.8–1.0 pH units in the 2–8 and 2–6 cm depths in winter and spring respectively. This created a net acidic subsurface layer of 0.2–0.4 pH units compared with soil at the beginning of the experiment. Subsurface acidification was 0.5–0.7 pH units greater in bare soil compared with the presence of pasture. Transformations of N resulting from application of simulated urine solution formed acidic subsurface layers in the field regardless of the season of application.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3