Comparison of nuclear magnetic resonance methods for the analysis of organic matter composition from soil density and particle fractions

Author:

Clemente Joyce S.,Gregorich Edward G.,Simpson André J.,Kumar Rajeev,Courtier-Murias Denis,Simpson Myrna J.

Abstract

Environmental contextThe association of specific organic matter (OM) compounds with clay mineral surfaces is believed to protect these compounds from degradation and thus result in long-term protection in soil. The molecular-level composition of soil OM associated with soil fractions was measured and compared using solid-state 13C nuclear magnetic resonance (NMR) and solution-state 1H NMR methods. Combining these methods allowed more detailed characterisation of OM associated with different soil fractions and will improve the understanding of OM dynamics in soil. AbstractOrganic matter (OM) associated with fine soil fractions is hypothesised to be protected from complete biodegradation by soil microbes. It is therefore important to understand the structure and stage of decomposition of OM associated with various soil fractions. Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy has been used extensively to investigate the OM composition of soils and soil fractions. Solution-state 1H NMR spectroscopy has not been used as much but is an emerging tool for analysing soil OM because 1H NMR spectra are often better resolved and provide information that complements the structural information obtained from solid-state 13C NMR experiments. This study compares one-dimensional solution-state 1H NMR and solid-state 13C NMR methods for assessing the degradation and composition of OM in three different soils, and their light and clay-size fractions. The alkyl/O-alkyl degradation parameter was consistent across all NMR methods and showed that OM associated with clay-size fractions were at more advanced stages of degradation as compared to that in light density soil fractions. Solution-state 1H and diffusion edited (DE) 1H NMR results showed the presence of high concentrations of microbial-derived peptidoglycan and peptide side-chains in clay-sized fractions. Lignin was also identified in clay-sized fractions using solid-state 13C and solution-state 1H NMR techniques. The combination of solid-state 13C and solution-state 1H NMR methods provides a more detailed analysis of OM composition and thereby facilitates a better understanding of the fate and preservation of OM in soil.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3