Abstract
A novel approach to the sustainable management of potassium (K) resources in agro-ecosystems is through better exploitation of genetic differences in the K efficiency of crop plants. Potassium efficiency is a measure of genotypic tolerance to soils with low potassium availability and can be quantified as the K efficiency ratio (the ratio of growth at deficient and adequate K supply). This study investigated the magnitude of variation in K efficiency among wheat (Triticum aestivum L.) genotypes grown in a glasshouse and in the field.
Genotypes differed significantly in response to low soil K availability in terms of shoot biomass during the vegetative growth phase and grain yield at maturity under glasshouse (144 genotypes) and field (89 genotypes) conditions. K-efficient and K-inefficient genotypes were identified. The main factor determining K efficiency for grain yield was the capacity of genotypes to maintain a high harvest index (grain yield/total shoot weight) at deficient K supply. Genotypes that had reduced harvest index under deficient K supply were K-inefficient. Capacity to tolerate low concentrations of K in shoot tissue where K supply was deficient was also important in determining K efficiency for grain yield. Potassium-efficient genotypes have the potential to enhance the productivity and sustainability of cereal cropping systems.
Subject
General Agricultural and Biological Sciences
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献