Effects of common carp on water quality and submerged vegetation: results from a short-term mesocosm experiment in an artificial wetland

Author:

Peterson DouglasORCID,Pearson James,Simpson William

Abstract

Bioturbation by non-native common carp (carp) can facilitate an ecosystem phase shift from clear to turbid water in shallow lakes and ponds, with negative effects on abundance of aquatic animals and plants. Management of carp often involves reducing populations below a threshold biomass at which important components of the aquatic ecosystem, like submerged aquatic vegetation (SAV), recover. To evaluate control targets for a nuisance carp population in Malheur Lake in SE Oregon, USA, we conducted a mesocosm experiment in a small wetland within the lake’s drainage basin. We stocked 200-m2 enclosures with individual or multiple carp of different age classes at target biomasses of 50, 100, and 300 kg ha−1. We measured turbidity, total suspended sediments, nutrients, chlorophyll-a, and surface coverage of SAV four times within a single growing season. Turbidity increased through time and soluble P was higher in 300 kg ha−1 carp treatments compared to the control, but few changes were observed for any of the other variables at any biomass. Results suggest that with well established SAV, a maintenance carp biomass threshold of <200 kg ha−1 will not result in a phase shift from a clear- to turbid-water state in the short-term.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3