Ruthenium Alkynyl Complexes in Non-Linear Optics

Author:

Humphrey Mark G.

Abstract

Non-linear optical (NLO) materials are able to modify the propagation characteristics of light. Such materials have a range of potential applications in advanced technologies and are therefore of considerable interest. This account summarizes the development of one class of organometallics as potential NLO materials, namely ruthenium alkynyl complexes. These are available in high yields by straightforward synthetic procedures and have good thermal and environmental stability. In studies ranging from small molecules (molecular weights ~1000) to second-generation dendrimers (with molecular weights of more than 20000), the author’s group and collaborators have assayed the NLO effects in complexes with a variety of ‘multipolar’ charge distributions (dipolar, quadrupolar, octupolar), revealing that ruthenium alkynyl complexes can be engineered to display record and near-record values of the parameters responsible for various interesting NLO effects. In particular, recent studies driven by the current focus on optimizing molecular multiphoton absorption cross-sections have afforded several examples with world-record values of these key coefficients. The author’s group has also shown that the fully reversible redox processes undergone by many ruthenium alkynyl complexes are a distinctive feature that can be exploited to afford molecular NLO switches, because the different and reversibly accessible redox forms of the complexes exhibit measurably different NLO responses. This unique type of switching has been extended in two ways to afford molecular switches with multiple accessible NLO states. First, ruthenium alkynyl complexes have been subjected to various ‘orthogonal’ (independent) switching stimuli (specifically oxidation–reduction, protonation–deprotonation, and photoisomerization), affording complexes that function as NLO switches with up to six distinct NLO states. Second, heterobimetallic complexes coupling ruthenium alkynyl and iron alkynyl centres have been prepared that exhibit multiple redox-accessible NLO states.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3