Intraspecific phenotypic variation in deer: the role of genetic and epigenetic processes

Author:

Flueck Werner T.,Smith-Flueck Jo Anne M.

Abstract

Intraspecific phenotypic variation (PV) in deer is common, at times impressively diverse, and involves morphology, development, physiology, and behaviour. Until recently considered a nuisance in evolutionary and taxonomic studies, PV has become the primary target to study fossil and extant species. Phenotypes are traditionally interpreted to express primarily interactions of inherited genetic variants. PV certainly originates from different genotypes, but additional PV, referred to as phenotypic plasticity (PP), results from gene expression responsive to environmental conditions and other epigenetic factors. Usage of ‘epigenetics’ for PP has increased exponentially with 20 316 published papers (Web-of-Science 1990 – May 2010), yet it does not include a single paper on cervids (1900 to the present). During the ‘genomic era’, the focus was on the primary DNA sequences and variability therein. Recently however, several higher order architectural genomic features were detected which all affect PV. (1) Genes: poli-genic traits; pleiotropic genes; poli-allelic genes; gene dosage (copy number variants, CNV); single nucleotide variance in coding and gene regulatory regions; mtDNA recombinations and paternal mtDNA inheritance. (2) Gene products: pleiotropic gene products; multiple protein structures through alternative splicing; variable gene product reactions due to gene dosage. (3) Gene expression: (i) epigenetic regulation at the DNA, nucleosomal and chromosomal levels; (ii) large-scale genomic structural variation (i.e. CNV imbalance); (iii) transcription factor proteins (TF), each regulating up to 500 target genes, with TF activity varying 7.5–25% among individual humans (exceeding variation in coding DNA by 300–1000×); (iv) non-protein-coding RNA (98.5% of genome) constituting maybe hundreds of thousands RNA signals; (v) gene expression responsive to external and internal environmental variation; (vi) transgenerational epigenetic inheritance (e.g. from ubiquitous non-gametic interactions, genomic imprinting, epistasis, transgenerational gene–diet interactions); (vii) epigenetic stochasticity resulting in random PP. A unique example of labile traits in mammals is the yearly regrowth of a complete appendage, the antler in cervids. Highly complex assortments of genotypes lead to a spectrum of phenotypes, yet the same spectrum can result if a single genotype generates highly complex assortments of epigenotypes. Although DNA is the template for the DNA–RNA–protein paradigm of heredity, it is the coordination and regulation of gene expression that results in wide complexity and diversity seen among individual deer, and per-generation variety of phenotypes available for selection are greater than available genotypes. In conclusion, epigenetic processes have fundamental influences on the great intraspecific PV found in deer, which is reflected in broad ranges of environmental conditions under which they can persist. Deer management and conservation of endangered cervids will benefit from appreciating the large inherent PV among individuals and the immense contribution of epigenetics in all aspects of deer biology and ecology.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3