Abstract
Shoot shrivelling severely threatens growth and development of deciduous trees in the northern hemisphere, and we observed that there was a significant difference in shoot shrivelling rate between different apple varieties in practice. In this study, we investigated the anatomical and physiological characteristics of branches from different germplasm resources combined with an analysis of the transcriptome. Transcriptomes of samples treated in the initial dormancy, deep dormancy and freeze–thaw periods were generated and characterised. In three different periods, 7233 differentially expressed genes (DEGs) were identified including 3538 upregulated genes and 3695 downregulated genes. DEGs related to plant hormone signal transduction, starch and sucrose metabolism, cutin, suberin and wax biosynthesis were significantly enriched. Physiological characterisation showed that dormancy overwinter can induce the accumulation of soluble sugar and starch, shoot shrivelling rate of ‘Fuji’ was 2.31 times that of the ‘Delicious’; and the critical water content of ‘Delicious’ was significantly higher than ‘Fuji’. Phytohormone contents and proportions varied irregularly according to the overwintering phase among two varieties. Wax content, morphology and composition also exhibited difference. In conclusion, branch microstructure, phytohormone and wax metabolism all determined the overwintering performance of trees and phytohormones can regulate wax metabolism to ensure normal overwintering of trees.
Funder
Special Fund for National Natural Science Foundation of China
Subject
Plant Science,Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献