Partitioning of 1,2-dichlorobenzene onto organic and inorganic aerosols

Author:

Ahn Jeonghyeon,Rao Guiying,Vejerano EricORCID

Abstract

Environmental contextContaminants adsorbed in aerosols are transported and deposited effectively to the respiratory system compared to their vapours. Measuring the extremely low concentration of highly volatile contaminants contained in aerosols is challenging; hence assessing their adverse effects on environmental and human health is less understood. The measured concentrations of these contaminants are similar to less volatile chemicals sampled from diverse environmental aerosols, suggesting that their contribution cannot be neglected. AbstractVolatile organic compounds (VOCs) are not expected to partition onto aerosols because of their high vapour pressure. Studies on gas–aerosol partitioning of VOCs have been limited because of the challenge in discriminating the small mass fraction of the VOCs in the aerosol relative to that in the gas phase. Here, we developed a bench-scale system to investigate the partitioning of a surrogate VOC, 1,2-dichlorobenzene (1,2-DCB), into inorganic and organic aerosols under different relative humidities (RHs) and temperatures. The partitioning coefficient (Kip) of 1,2-DCB into succinic acid (SA) aerosol was ~10× higher than those into ammonium sulfate (Am Sulf) aerosol. These Kip corresponded to 0.23–3.27 pg 1,2-DCB µg−1 of SA aerosol and 0.02–3.82 pg 1,2-DCB µg−1 of Am Sulf aerosol for RH levels of 5–95%. Sorption of 1,2-DCB onto Am Sulf aerosol followed the classic relationship between Kip and RH, whereas that onto SA did not. For Am Sulf aerosols, RH levels exceeding 50% have a negligible effect on partitioning, in which the extremely low amount of 1,2-DCB partitioned into the aerosol via dissolution. The octanol–air partition (KOA) model predicted the Kip of 1,2-DCB for SA aerosol better than the saturated vapour pressure partition (Pi0) model, whereas the Pi0 model predicted Kip better than the KOA model only when absorptive partitioning was considered.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3