Hydrology of swelling soils: a review

Author:

Smiles D. E.

Abstract

A generally accepted theory of liquid flow in rigid systems has been used in soil science for more than 50 years. Liquid flow in systems that change volume with liquid content is not so well described and remains a major challenge to soil scientists, although its application in chemical and mining engineering and soil mechanics is increasingly accepted. Theory of water flow in swelling soils must satisfy material continuity. It must also account for changes in the gravitational potential energy of the system during swelling and for anisotropic stresses that constrain the soil laterally but permit vertical movement. A macroscopic and phenomenological analysis based on material balance and Darcy’s law is the most useful first approach to water flow and volume change in such soils. Use of a material coordinate based on the solid distribution results in a flow equation analogous to that L. A. Richards enunciated for non-swelling soils. This framework is strain-independent and solutions to the flow equation exist for a wide range of practically important conditions. The approach has been well tested in clay suspensions and saturated systems such as mine tailings and sediments. It is also applied in soil mechanics. This paper reviews central elements in application of the analysis to swelling soils. It argues that, as with use of the Richards’ equation in rigid soils, complexities are evident, but the approach remains the most coherent and profitable to support current need and future research. The use of material coordinates, to ensure material balance is assessed correctly, is simple.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3