Thermoregulation in monotremes: riddles in a mosaic

Author:

Brice Peter H.

Abstract

The three extant genera of the Monotremata have evolved, probably from a pre-Cretaceous Gondwanan origin, independently of the Theria to display a variety of ancestral and derived features. A comparison of their thermoregulation reveals a diversity of physiology that might represent both plesiomorphic and apomorphic elements within this mosaic. In the tachyglossids, the echidnas Tachyglossus and Zaglossus, body temperature is often labile, rising as a result of activity and allowed to decline during inactivity. This daily heterothermy, which is not necessarily torpor, may combine with typical mammalian hibernation to provide substantial energy economy in a wide variety of often unproductive habitats. Only when incubating do free-ranging echidnas display classic mammalian thermoregulation, the facultative nature of which suggests echidna-like physiology as an example of a protoendothermic stage in the evolution of endothermy. Similarly, physiological response to heat in Tachyglossus, at least, may be plesiomorphic, relying on the cyclic loss of heat stored during activity. Tachyglossids neither exhibit a panting response nor spread saliva to facilitate evaporative cooling and Tachyglossus, though not Zaglossus, lacks functional sweat glands. By contrast, the only extant ornithorhynchid, the platypus Ornithorhynchus, does not utilise heterothermy of any kind and maintains its body temperature more tightly than several semiaquatic eutherians. Although not necessarily required, it responds to heat via sweating, but not panting or saliva spreading. The classic nature of ornithorhynchid thermoregulation stands in marked contrast to the more diverse thermoregulatory responses shown by the tachyglossids, making it difficult to determine which aspects of monotreme thermoregulation are plesiomorphic and which are apomorphic.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary process toward avian-like cephalic thermoregulation system in Theropoda elucidated based on nasal structures;Royal Society Open Science;2023-04

2. Echidna Nutrition;Fowler' s Zoo and Wild Animal Medicine Current Therapy, Volume 10;2023

3. Warm-Blooded Mammals;The American Biology Teacher;2022-11

4. South African Thermal Physiology: Highlights from the Twentieth Century;Thermal Physiology;2022

5. Contributions from a Land Down Under: The Arid Continent;Thermal Physiology;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3