Mouse minipuberty coincides with gonocyte transformation into spermatogonial stem cells: a model for human minipuberty

Author:

Li Ruili,Vannitamby Amanda,Yue Sarah S. K.,Handelsman David,Hutson John

Abstract

As the transient postnatal hormone surge in humans, known as ‘minipuberty’, occurs simultaneously with key steps in germ-cell development, we investigated whether similar changes occur in the hypothalamic–pituitary–testicular axis of neonatal mice at a time that would coincide with gonocyte transformation into spermatogonial stem cells (SSC). Serum and testes were collected from C57Bl/6 mice at embryonic Day 17 (E17), birth (postnatal Day 0; P0) and daily until P10. Serum FSH and testosterone levels in both serum and testes were analysed and gene expression of FSH receptor (Fshr), luteinising hormone receptor (Lhr), anti-Müllerian hormone (Amh), octamer-binding transcription factor 4 (Oct-4), membrane type 1 metalloprotease (Mt1-mmp), proto-oncogene C-kit and promyelocytic leukaemia zinc finger (Plzf ) was quantified by real-time polymerase chain reaction. We found a transient surge of serum and testicular testosterone levels between P1 and P3 and a gradual increase in FSH from P1 to P10. Testis Lhr expression remained low from P0 until P10 but Fshr expression peaked between P3 and P6 (P < 0.01). The same was found for Oct-4 expression (a gonocyte marker), which surged between P3 and P6 (P < 0.01). Mt1-mmp expression peaked at P3 (P < 0.05). The expression pattern of both C-kit and Plzf (SSC markers) was similar with a steady increase from P1 to P10. These results show a transient activation of the hypothalamic–pituitary–testicular axis postnatally with increases in serum and testicular testosterone at P1–P3 and testicular Fshr (but not Lhr) at P3–P6. These changes coincide with increases in gene expression of Oct4, Mt1-mmp, Plzf and C-kit, reflecting gonocyte activation, migration and transformation into SSC. In conclusion, these findings suggest that ‘minipuberty’ does occur in mice and that gonocyte transformation may be driven by a transient FSH signalling pathway.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3