Cu(hfac)2 Complexes with Nitronyl Ketones Structurally Mimicking Nitronyl Nitroxides in Breathing Crystals

Author:

Tretyakov Evgeny V.,Romanenko Galina V.,Veber Sergey L.,Fedin Matvey V.,Polushkin Aleksey V.,Tkacheva Anastasia O.,Ovcharenko Victor I.

Abstract

Breathing crystals based on polymer-chain complexes of Cu(hfac)2 (hfac = hexafluoroacetylacetonate) with nitronyl nitroxides represent a new type of molecular magnetic sensors, exhibiting thermally and light-induced structural rearrangements in the spin clusters Cu ← (O∸N<)n accompanied by magnetic anomalies. To shed light on the driving forces of the rearrangements a method for the synthesis of sterically hindered 4-oxo-3,4-dihydro-2H-pyrrole-N-oxides (nitronyl ketones) structurally mimicking nitronyl nitroxides in breathing crystals has been determined. This method employs palladium-catalyzed cross-coupling of 3,3,4-trimethyl-4-nitropentanoic acid chloride with 4-stannylpyrazoles, leading to the formation of nitroketones followed by soft reduction into hydroxylamines, that then undergo self-initiated cyclization into the corresponding nitrones. The radical oxidation of the latter finally yields the target nitronyl ketones. An X-ray diffraction analysis of the nitronyl ketones confirms that their structural characteristics are close to those of the corresponding nitronyl nitroxides. Moreover, upon reaction with Cu(hfac)2, diamagnetic nitronyl ketones form polymer-chain complexes with a ‘head-to-tail’ motif and a structure similar to their analogues containing paramagnetic nitronyl nitroxides. Finally, it has been found that one of the complexes with nitronyl ketones does manifest a purely structural phase transition similar to its copper-nitroxide analogue, but at the same time it does not manifest any signs of a magneto-structural transition characteristic for breathing crystals where a Jahn–Teller axis in the coordination units CuNO4(O∸N<) is flipped. This observation strongly confirms the crucial role of the exchange interactions between spins of copper and nitroxide for the origin of magneto-structural anomalies in breathing crystals.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3