Quantifying dairy farm nutrient fluxes and balances for improved assessment of environmental performance

Author:

Rugoho Innocent,Lewis Hayden,Islam Muhammad,McAllister Andrew,Heemskerk Gemma,Gourley Andrew,Gourley Cameron

Abstract

Excess nutrients are challenging the long-term sustainability of grazing-based dairy farming. Whole-farm nutrient-mass balance (NMB) is a well recognised approach to improve on-farm nutrient management decisions. In the present paper, we use a standardised approach for quantifying NMB on grazing-based dairy farms, using a newly developed online tool. Preliminary evaluation, using selected farm data from a previous Australia-wide dairy-farm nutrient study, demonstrated highly comparable estimates of farm area, nutrient fluxes and NMB, with substantial efficiencies in time and sample analysis. Nutrient mass balances were also determined on 16 diverse dairy farms across the five major dairy regions of Victoria, Australia. These results highlighted the importance of purchased feed, fertiliser and milk sales, as major sources of nutrient inputs and outputs, with whole-farm NMB for the 16 dairy farms ranging from 185 to 481 kg/ha for nitrogen, 12–59 kg/ha for phosphorus, 9–244 kg/ha for potassium and –6–55 kg/ha for sulfur. Current industry adoption of the NMB tool has confirmed the benefits of a standardised and efficient collation and processing of readily available farm data to inform nutrient management decisions on commercial dairy farms. We suggest that the standardised assessment of nutrient fluxes, balances and efficiency, as well as feed- and milk-production performance at the whole-farm level, provides dairy farmers, farm advisors and industry and policy analysts with the ability to determine industry-wide goals and improve environmental performance.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3