Carbon Dioxide Exchange in Response to Change of Environment and to Defoliation in a Tobacco Crop

Author:

Whitfield DM,Connor DJ,Sale PJM

Abstract

Rates of carbon dioxide exchange of field-grown tobacco crops at early flowering and maturity were measured using a pair of large closed-system field chambers. Photosynthetic responses to irradiance and temperature were investigated on both occasions. Rate of dark respiration and its response to temperature were measured during the night. Defoliation treatments were employed to disrupt the correlation between leaf age and light environment in the canopy. In these experiments, the short-term photosynthetic response to irradiance was determined for crops that were progressively defoliated upwards or downwards. Long- term effects of varying intensities of downward defoliation were also investigated. Maximum photosynthetic rates of 3.7 g CO2 m-2 h-1 were achieved at early flowering. These had fallen to 1.9 g CO2 m-2 h-1at maturity. Maximum rates occurred at an irradiance of approximately 700 W m-2. Short-term shifts in temperature in the range 10-32°C had little effect during the day, but dark respiration was strongly dependent on temperature. Defoliation experiments demonstrated that lower leaves retained a significant potential for photosynthesis but their contri- bution to the total exchange of CO2 of mature crops was only small. This was attributed in part to the poorer light regime in the lower canopy. Results are discussed in the context of the development of yield and quality in flue-cured tobacco.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3