Stomatal and Photosynthetic Limitations to Leaf Growth

Author:

Kriedemann PE

Abstract

Leaf area derives from the product of cell number and cell size within lamina tissues. Cell division thus dictates potential size, while cell enlargement is responsible for expression of that potential. These two facets of leaf growth differ in their substrate requirements under well nourished conditions and also show dissimilar sensitivity to environmental stress. Meristematic activity in terminal apices and subsequent emergence of successive leaves seem relatively insensitive to drought and salinity, but do appear limited by photoassimilate supply because CO2 input and radiation level exert strong effects. By contrast, lamina expansion depends more heavily on adequate supplies of water and nutrients, and is especially sensitive to environmental stresses. Impact of adverse conditions on leaf growth can be alleviated by physiological adjustments such as alteration of viscoelastic properties of lamina tissues, regulation of ionic balance and accumulation of organic osmotica. Effective adjustment becomes manifest as turgor maintenance, continuity of leaf growth and sustained gas exchange. This necessitates finely tuned water relations and draws upon energy and substrate of recent photosynthetic origin. Alleviation of drought and salinity stress is thus subject to stomatal and photosynthetic limitations.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3