Testing the ability of organic ligands and plant materials to reduce the toxic effects of aluminium in soils

Author:

Ginting Sahta,Johnson Bruce B.,Wilkens Sabine

Abstract

An acid soil from the Sedgwick region of central Victoria was modified to provide a range of aluminium (Al) concentrations in order to test whether incorporation of organic ligands, or plant material, could reduce plant-available (or 'reactive') Al in soils. Al concentrations in the soil were increased by addition of varying amounts of a solution of AlK(SO4)2, chosen after measurement of the adsorption of Al onto the soil. A similar study of citrate adsorption allowed estimation of the amount of citrate required to achieve a 1 : 1 Al : citrate ratio in the soil in order to test the effectiveness of organic ligands in alleviating Al toxicity. Citrate was found to decrease the level of reactive Al in the soil. Pot trials also showed that addition of citrate to Al amended soil caused some improvement in root length and dry weight of soybean plants (Glycine max) compared with the Al amended soil. Addition of oxalate also reduced the level of reactive Al but did not improve root growth. Incorporation of dried leaves from lucerne (Medicago sativa), rhubarb (Rheum rhubarbarum), oxalis (Oxalis pes-caprae), and soybean at application rates equivalent to 5 and 10 t/ha to a soil containing added Al tended to increase root length. The most surprising result was the relatively small effect of high Al concentrations on plant growth, with 2000 μm reactive Al reducing root length by only 50% after 15 days of growth. This is a much smaller reduction in root length than has previously been obtained in hydroponic systems with 500 μm reactive Al after 15 days growth (Ginting et al. 1998) and points to a major difference between plant growth trials in solution culture and soil systems. One possible explanation for this difference is that the roots are in contact with only a small volume of soil solution, and this can be modified by root exudates. Further research is required to test this hypothesis, which will require the development of a method of analysis for Al in soil systems that more accurately reflects reactive Al levels in the root-zone.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3