Caspase-3-mediated apoptosis and cell proliferation in the equine endometrium during the oestrous cycle

Author:

Roberto da Costa R. P.,Serrão P. M.,Monteiro S.,Pessa P.,Silva J. Robalo,Ferreira-Dias G.

Abstract

Cell proliferation and apoptosis are hormone-dependent physiological processes involved in endometrial growth and regression. The aims of the present study were: (1) to evaluate endometrial cell proliferation using proliferating cell nuclear antigen (PCNA) expression; (2) to evaluate the induction of endometrial cell death by the expression of active caspase-3 and the apoptotic phenotype visualised by DNA fragmentation; and (3) to relate these observations to endometrial tissue dynamics in the equine endometrium throughout the oestrous cycle. Endometria were assigned to follicular and luteal phases based on ovarian structures and plasma progesterone. Cell proliferation and active caspase-3-mediated apoptosis were expressed in both phases of the oestrous cycle. In the luteal phase, PCNA expression was higher than in the follicular phase. Highest PCNA activity was noted in the luminal and glandular structures. Active caspase-3 staining was increased in luminal epithelium and deep glandular cells during the luteal phase. However, in the follicular phase, stromal cells showed greater active caspase-3 expression. Only a few apoptotic endometrial cells were detected by terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL) and these cells were mostly present in luminal and glandular structures. A simultaneous increase in DNA, cell proliferation and protein synthesis was observed in the endometrium during the mid-luteal phase. This suggests that cell hyperplasia occurs at the time the histotroph is needed for eventual embryo nourishment.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3