Natural 15N/14N isotope composition in C3 leaves: are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites?

Author:

Tcherkez Guillaume

Abstract

Although nitrogen isotopes are viewed as important tools for understanding plant N acquisition and allocation, the current interpretation of natural 15N-abundances (δ15N values) is often impaired by substantial variability among individuals or between species. Such variability is likely to stem from the fact that 15N-abundance of assimilated N is not preserved during N metabolism and redistribution within the plant; that is, 14N/15N isotope effects associated with N metabolic reactions are certainly responsible for isotopic shifts between organic-N (amino acids) and absorbed inorganic N (nitrate). Therefore, to gain insights into the metabolic origin of 15N-abundance in plants, the present paper reviews enzymatic isotope effects and integrates them into a metabolic model at the leaf level. Using simple steady-state equations which satisfactorily predict the δ15N value of amino acids, it is shown that the sensitivity of δ15N values to both photorespiratory and N-input (reduction by nitrate reductase) rates is quite high. In other words, the variability in δ15N values observed in nature might originate from subtle changes in metabolic fluxes or environment-driven effects, such as stomatal closure that in turn changes v0, the Rubisco-catalysed oxygenation rate.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3