Characterisation of a windbreak system on the south coast of Western Australia. 1. Microclimate and wind erosion

Author:

Sudmeyer R. A.,Scott P. R.

Abstract

The lack of data relating changes in microclimate and wind erosion to crop growth in shelter is a constraint to the adoption of windbreak systems in Australia. In this experiment microclimate and soil movement were measured in a 450 m wide bay between 2 Pinus pinaster windbreaks in south-western Australia over 4 years. Changes in wind speed and microclimate as a result of wind shelter varied spatially and temporally. When the wind direction was perpendicular to the windbreaks, wind-run reductions greater than 20% extended 18 times the height of the windbreak (H) downwind. However, over the whole growing season wind-run reductions greater than 20% only extended 3–6 H from the windbreaks, and were confined to within 4 H over the whole year. Over the growing season, atmospheric vapour pressure and average daily temperature and potential evaporation in the most sheltered part of the windbreak bay were generally within ± 5–10% of unsheltered values. While growing conditions were generally improved, there were periods at the end of the growing season when sheltered crops experienced increased air temperatures and vapour pressure deficit. The principal benefit of the windbreaks appeared to be reducing wind speed during periods with short duration erosive winds. More than 1 H from the windbreaks, wind erosion was reduced for 36 H downwind of the windbreak that provided most shelter during the period of maximum soil movement. Browsing stock increased the porosity of the lower 1.5 m of the windbreaks, which allowed wind to funnel under the windbreaks. This study highlights the difficulty of maintaining constant shelter in an environment where the prevailing wind direction changes throughout the year and the need to orient windbreaks to provide shelter during those times when strong winds are most damaging to soils or crops.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3