Vegetation Effects on the Isotopic Composition of Atmospheric CO2 at Local and Regional Scales: Theoretical Aspects and a Comparison Between Rain Forest in Amazonia and a Boreal Forest in Siberia

Author:

Lloyd J,Kruijt B,Hollinger DY,Grace J,Francey RJ,Wong SC,Kelliher FM,Miranda AC,Farquhar GD,Gash JHC,Vygodskaya NN,Wright IR,Miranda HS,Schulze ED

Abstract

In order to understand the factors influencing the isotopic composition of air above and within plant canopies, equations quantifying the effects of photosynthesis, respiration and turbulent transport on the isotopic composition of the surrounding CO2 are developed. These equations are then extended to the regional scale, allowing the average isotopic composition of CO2 within the convective boundary layer to be related to the isotopic composition of tropospheric CO2, and to isotopic fractionations during ecosystem carbon exchange. Equations presented have the potential to be inverted, allowing direct estimation of isotopic fractionations by vegetation at the local and regional scales. Equations allowing the estimation of the extent of refixation of respired CO2 ('recycling') at the regional scale are also presented. Using measurements of CO2 carbon isotopic composition in conjunction with ecosystem flux measurements, the theory is applied to a tropical rain forest in Amazonia and a boreal forest in Siberia. When examined on a ground area basis and over the course of a day it is observed that, by virtue of greater fluxes but similar isotopic fractionations, the tropical rainforest exerts much more influence over the isotopic composition of the surrounding air than does the boreal forest. Due to higher rates of ecosystem respiration, recycling of respired CO2 is modelled to be much greater for tropical rainforest, but values presented here are considerably lower than previously published estimates, the latter being based solely on the relationship between the isotopic composition and concentrations of CO2 within forest canopies. The reasons for these differences are examined.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3