Mitigating greenhouse gas emissions from waste treatment through microbiological innovation

Author:

Ni Gaofeng

Abstract

The emission of greenhouse gases (GHGs) from the treatment of municipal, agricultural and industrial waste occurs in virtually every city on our planet. This is due to various microbial activities at different stages of waste treatment. Traditional treatment methods have a significant environmental impact, producing methane, carbon dioxide and nitrous oxide emissions, in addition to demanding high energy input and having low treatment efficiencies. To address these issues, the Australian water and waste sectors are shifting towards the adoption of next-generation, carbon-neutral treatment options. Here I discuss our current knowledge gaps in mitigating GHG emissions from waste streams, with a focus on wastewater treatment plants. I highlight the application of real-time genomics to identify sources of GHG emissions, monitor mitigation efforts, assist process operation and guide plant operations. I also emphasise recent innovations of microbial processes that capture GHG from waste and upgrade them into higher value products. Ultimately, combined effort across disciplines is required to proactively mitigate the global threat of climate change.

Publisher

CSIRO Publishing

Subject

Microbiology (medical),Public Health, Environmental and Occupational Health,Applied Microbiology and Biotechnology,Microbiology

Reference35 articles.

1. Methane emissions from municipal wastewater treatment processes.;Environ Sci Technol,1993

2. Global diversity and biogeography of bacterial communities in wastewater treatment plants.;Nat Microbiol,2019

3. A critical review on anaerobic co-digestion achievements between 2010 and 2013.;Renew Sustain Energy Rev,2014

4. Olivier JGJ (2022) Trends in global CO and total greenhouse gas emissions: 2021 Summary Report. PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands.

5. Greenhouse gas emissions from wastewater treatment plants.;Energy Procedia,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3