Hexose uptake by developing cotyledons of Vicia faba: physiological evidence for transporters of differing affinities and specificities

Author:

Harrington Gregory N.,Dibley Katherine E.,Ritchie Raymond J.,Offler Christina E.,Patrick John W.

Abstract

Cotyledons of broad bean (Vicia faba L.) develop in an apoplasmic environment that shifts in composition from one dominated by hexoses to one dominated by sucrose. During the latter phase of development, sucrose / H+ symporter activity and expression is restricted to cotyledon epidermal transfer cell complexes that support sucrose fluxes that are 8.5-fold higher than those exhibited by the storage parenchyma. In contrast, the flux difference between these cotyledon tissues is only 1.7-fold for hexoses. Glucose and fructose uptake was shown to be sensitive to PCMBS and phloridzin, both of which slow H+-sugar transport. A low Km (or high affinity transporter, HAT) mechanism transports glucose and glucose-analogues exclusively. No HAT system for fructose could be found. A high Km (low affinity transporter, LAT) mechanism transports a broader range of hexoses, including glucose and fructose. Consistent with glucose and fructose transport being H+-coupled, their uptake was inhibited by dissipating the proton motive force (pmf) by treating cotyledons with carbonyl cyanide m-chlorophenol hydrazone, propionic acid or tetraphenylphosphonium ion. Erythrosin B inhibited hexose uptake, indicating a role for the P-type H+-ATPase in establishing the pmf. It is concluded that H+-coupled glucose and fructose transport mechanisms occur at plasma membranes of dermal transfer cell complexes and storage parenchyma cells. These transport mechanisms are active during pre- and storage phases of cotyledon development. However, hexose symport only makes a quantitative contribution to cotyledon biomass gain during the pre-storage stage of development.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3