Alpine meadow degradation decreases soil P availability by altering phoD-harbouring bacterial diversity

Author:

Zou Yanuo,Wang Xiangtao,Wang Jie,Zhang Lu,Liao Lirong,Liu Guobin,Song Zilin,Zhang ChaoORCID

Abstract

Context Soil degradation is usually accompanied by significant changes in phosphorus (P) availability, which complicates soil management. However, the effect of ecosystem degradation on soil P availability remains poorly understood, especially in the alpine ecosystem, which is one of the most understudied and vulnerable terrestrial habitats of the planet. Aims Assess the effect of meadow degradation on soil P availability in the alpine ecosystem. Methods Changes in soil P-related properties, phoD-harbouring bacterial communities, and alkaline phosphatase levels were investigated in four alpine meadows along a degradation gradient (non-degraded, lightly degraded, moderately degraded, and severely degraded) on the Tibetan Plateau. Key results We found meadow degradation reduced alkaline phosphatase activity by 6.3–11.22% and soil P availability by 27.1–42.4% compared to the respective values in the non-degraded meadows, but this negative impact was only observed in moderately and severely degraded meadows. Meadow degradation caused a P limitation on the phoD-harbouring community and a decline in the abundance of phoD genes and diversity of phoD-harbouring bacterial communities, with an increase in oligotrophic groups (e.g. Actinobacteria) and a reduction in copiotrophic groups (e.g. Proteobacteria). The degradation-induced reduction in soil C supply and plant biomass decreased soil P availability by lowering the activity of alkaline phosphatases, which are closely associated with phoD-harbouring bacterial structure and diversity. Alloactinosynnema and Actinomadura were identified as the key taxa contributing to alkaline phosphatases activity. Conclusions Alpine meadow degradation decreases soil P availability by altering phoD-harbouring bacterial diversity. Implications Our results revealed the mechanisms of decreased P availability during alpine meadow degradation, which can guide the restoration of degraded meadow ecosystems.

Funder

National Key Research and Development Program of China

National Sciences Foundation of China

Shaanxi Provincial Science Fund for Distinguished Young Scholars

West Light Foundation of Chinese Academy of Science

Publisher

CSIRO Publishing

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3