Secretome derived from different cell lines in bovine embryo production in vitro

Author:

Perrini C.,Esposti P.,Cremonesi F.,Consiglio A. Lange

Abstract

The present study investigated the effects of conditioned medium (CM), composed of microvesicles (MVs) and soluble factors present in the supernatant (SN), of bovine endometrial and amniotic cells on embryo quality and rate of blastocyst production. Presumptive zygotes were randomly assigned on Days 1, 3 and 5 after fertilisation to synthetic oviducal fluid with amino acids (SOFaa; control) or to SOFaa supplemented with either 20% endometrial or amniotic CM, 20% SN or 100 × 106 MVs mL−1. Embryos were evaluated on Day 7. For groups supplemented with MVs derived from either endometrial or amniotic cells on Day 1 of culture, blastocysts had developed, but at a lower rate than in the control group. Blastocysts had developed in all groups in which endometrial or amniotic cell-derived CM or MVs were added on Day 3 of culture, but the rate of blastocyst development was significantly lower in both CM groups than in the MVs groups. The addition of all secretome fractions (CM, MVs and SN) derived from either bovine endometrial or amniotic cells on Day 5 of culture resulted in blastocyst production, but only amniotic MVs resulted in a blastocyst production rate comparable to that in the control group. Supplementation of SOFaa on Day 5 resulted in a qualitatively higher number of inner cell mass cells compared with the control group only for the amniotic CM and MVs groups. At day 7, these data were confirmed by RT-qPCR evaluation of genes (Bcl-2-associated X protein (BAX) and glutathione peroxidase 1 (GPX1) involved in apoptosis and protection against reactive oxygen species. In conclusion, of the different secretome fractions tested, only amniotic MVs added to SOFaa resulted in better outcomes than in the control group.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3