Land-use change on Mount Gede, Indonesia, reduced native earthworm populations and diversity

Author:

Darmawan Andy,Atmowidi Tri,Manalu Wasmen,Suryobroto Bambang

Abstract

The conversion of natural forest to agroforestry plantations and annual cropping systems alters the soil habitat and food resources for biota, including earthworms. Native earthworm species may disappear whereas exotic species with greater tolerance of disturbance and less niche specialisation may thrive. The objective of the study was to compare the earthworm diversity in managed forest and agroforestry systems, which were cultivated for mixed plantation and annual crop production on Mount Gede, Indonesia. All the habitats in the study area were impacted by humans. The forest habitat was a managed forest, with a permanent tree cover, whereas mixed plantation had a partial shrub cover. Meanwhile, homogenous plantation was cultivated with annual crops. Among 3787 individuals collected during July–October 2012, five Oriental earthworm species were identified in the soil communities of Mount Gede: Drawida nepalensis, Notoscolex javanica, Pheretima pura-group, Polypheretima moelleri, and Polypheretima sempolensis. Also, 18 species were found that are reported to be non-Oriental in origin. Anthropogenic disturbance of forests on Mount Gede, due to conversion into plantations, alters the earthworm environment by increasing soil water content, temperature and total phosphorous content, while decreasing organic carbon. N. javanica was the only native species to survive this deforestation, while the exotic Ocnerodrilus occidentalis and Pontoscolex corethrurus thrived, becoming the eudominant species. From the forest area to the mixed and homogenous plantations, the predicted decreasing diversity is evidenced by the lowering trend of Shannon’s diversity index. In conclusion, the land-use change into mixed plantations and annual croplands has reduced earthworm diversity in this region of Mount Gede, Indonesia.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3