Soil organic carbon in cropping and pasture systems of Victoria, Australia

Author:

Robertson Fiona,Crawford Doug,Partington Debra,Oliver Ivanah,Rees David,Aumann Colin,Armstrong Roger,Perris Roger,Davey Michelle,Moodie Michael,Baldock Jeff

Abstract

Increasing soil organic carbon (SOC) storage in agricultural soils through changes to management may help to mitigate rising greenhouse gas emissions and sustain agricultural productivity and environmental conditions. However, in order to improve assessment of the potential for increasing SOC storage in the agricultural lands of Victoria, Australia, further information is required on current SOC levels and how they are related to environmental conditions, soil properties and agricultural management. Therefore, we measured stocks of SOC at 615 sites in pasture and cropping systems in Victoria, encompassing eight regions, five soil orders and four management classes (continuous cropping, crop–pasture rotation, sheep or beef pasture, and dairy pasture), and explored relationships between the C stocks and environment, soil and management. The results showed an extremely wide range in SOC, from 2 to 239 t C/ha (0–30 cm). Most of this variation was attributable to climate; almost 80% of the variation in SOC stock was related to annual rainfall or vapour pressure deficit (i.e. humidity). Texture-related soil properties accounted for a small, additional amount of variation in SOC. After accounting for climate, differences in SOC between management classes were small and often not significant. Management practices such as stubble retention, minimum cultivation, perennial pasture species, rotational grazing and fertiliser inputs were not significantly related to SOC stock. The relationships between SOC and environment, soil and management were scale-dependent. Within individual regions, the apparent influence of climate and soil properties on SOC stock varied, and in some regions, much of the variation in SOC stock remained unexplained. The results suggest that, across Victoria, there is a general hierarchy of influence on SOC stock: climate > soil properties > management class > management practices.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3