Changes in leaf ecophysiological traits and proteome profile provide new insights into variability of salt response in the succulent halophyte

Author:

Belghith Ikram,Senkler Jennifer,Abdelly Chedly,Braun Hans-Peter,Debez AhmedORCID

Abstract

Natural variability of stress tolerance in halophytic plants is of significance both ecologically and in view of identifying molecular traits for salt tolerance in plants. Using ecophysiological and proteomic analyses, we address these phenomena in two Tunisian accessions of the oilseed halophyte, Cakile maritima Scop., thriving on arid and semi-arid Mediterranean bioclimatic stages (Djerba and Raoued, respectively), with a special emphasis on the leaves. Changes in biomass, photosynthetic gas exchange and pigment concentrations in C. maritima plants treated with three salinity levels (0, 100 and 300 mM NaCl) were monitored for 1 month. Comparative two-dimensional gel electrophoresis (2-DE) revealed 94 and 56 proteins of differential abundance in Raoued and Djerba accessions, respectively. These salinity-responsive proteins were mainly related to photosynthesis and oxidative phosphorylation (OXPHOS). Although Djerba accession showed a lower biomass productivity, it showed a slightly higher CO2 assimilation rate than Raoued accession when salt-treated. Photosynthesis impairment in both accessions under salinity was also suggested by the lower abundance of proteins involved in Calvin cycle and electron transfer. A significant increase of protein spots involved in the OXPHOS system was found in Djerba accession, suggesting an increase in mitochondrial respiration for increased ATP production under saline conditions, whereas a lesser pronounced trend was observed for Raoued accession. The latter showed in addition higher abundance of proteins involved in photorespiration. Salt-challenged plants of Djerba also likely developed mechanisms for scavenging ROS in leaves as shown by the increase in superoxide dismutase and thioredoxin, while an opposite trend was found in Raoued.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3