Effective detection and identification of sheath-tailed bats of Australian forests and woodlands

Author:

Armstrong K. N.ORCID,Broken-Brow J.ORCID,Hoye G.,Ford G.,Thomas M.,Corben C.

Abstract

Assessing the risk to threatened species of population decline from anthropogenic disturbances is challenging when there are issues with species identification, and little is known of their biology, distribution, population size, and habitat preference. The bare-rumped sheath-tailed bat (Saccolaimus saccolaimus) is one such species that has a poorly defined distribution over two broad areas of northern Australia. Environmental impact assessments are expected to consider the possibility of its presence in intervening areas outside the known distributions. Our study presents new empirical data that can assist with detection of S. saccolaimus across the entire expanse of northern Australia, provides a critical analysis of acoustics-based identification of the species, and assessed presence within the potentially high value habitat of tall Eucalyptus tetrodonta-dominated forest on the western side of Cape York Peninsula using a combination of trapping and acoustic recordings. Capture of other Saccolaimus species was the greatest of any survey conducted to date in Australia, demonstrating that the capture of these high-flying bat species in tall forest habitats can be relatively effective with mist net arrays hoisted into the tree canopy. In addition, reference echolocation call collections from the focal trapping area plus other locations across northern Australia allowed characterisation and comparison of the calls of most low-frequency-emitting (LFE) echolocating bat species of northern Australia. In addition to separation of species-specific search phase call types using multivariate statistics, a compilation of features from search phase, approach phase and feeding buzz echolocation calls will help distinguish S. saccolaimus from most other LFE species. However, the similarity of the echolocation calls of S. mixtus and S. saccolaimus prevented them from being distinguished from one another. A multi-method approach that emulates the present study and incorporates our recommendations and cautions will lead to robustness in ecological studies and greater clarity in environmental impact assessments.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3