Counting Single DNA Molecules in a Capillary with Radial Focusing

Author:

Zheng Jinjian,Yeung Edward S.

Abstract

For single-molecule detection, usually a small detection volume of 10 pL or less is used to improve the signal-to-noise ratio. Detection of every molecule in a sample requires that the sample be driven through a well-defined volume to facilitate laser excitation. We report a novel approach to count single DNA molecules with nearly 100% efficiency. By applying an electric field across a 40 cm long, 75 × 75 µm2 square capillary together with hydrodynamic flow from cathode to anode, we were able to concentrate more than 95% of DNA molecules into a 10 µm region at the centre of the capillary. The YOYO-1 labelled λ-DNA molecules were imaged with an intensified CCD camera. We found that the single DNA molecule detection efficiency in a 10–17 M solution was 114 ± 21%. The mobility of the DNA molecules after radial focusing was relatively constant, with relative standard deviations ranging from 0.8% to 1.4%. This allowed us to match the sampling rate to the length of the detection window to maximize counting efficiency. Analysis of a 40.2 nL injected plug of 2 × 10–14 M λ-DNA gave a result of 492 ± 73 molecules, which agreed well with the estimated value of 484. This method should be generally useful for counting deformable molecules or non-spherical particles at extremely low concentrations.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3