Abstract
Environmental contextThe export of various man-made pollutants from northern India has a large impact on aerosol formation processes, their transformations and regional environmental chemistry over tropical peninsular India. The quantitative source apportionment of organic aerosols performed in this study provides a better understanding of their sources and implications for climate and air-quality management policies in South Asia.
AbstractThis study highlights seasonal characteristics, sources, daytime (sea-breeze) and night-time (land-breeze) variations of carbonaceous and water-soluble ionic components in PM10 (<10µm particulate matter) aerosols from the east coast (Chennai city) of tropical India. Elemental and organic carbon (EC and OC) were found to be higher in winter when air masses were delivered from the northern part of India covered by the Indo-Gangetic-Plains whereas lower concentrations were observed during summer and monsoon associated with marine air masses. Sea salts (Na+ and Cl–), dust (Ca2+ and Mg2+) and nitrates (NO3–) were found to be highest in monsoon, suggesting these species may be co-transported over the sampling site with marine air masses. Using air mass back-trajectory analysis, linear relationships between chemical species and specific mass ratios, we demonstrate that east coast urban aerosols are strongly influenced by aged anthropogenic sources including biomass burning in winter and post monsoon while aged marine emissions mixed with local pollutants (dust and vehicular) are important in monsoon and summer. Further, the mesoscale phenomenon was reflected in measured chemical constituents during the study period. Positive-matrix-factorisation (PMF) analysis confirmed that OC aerosols are largely attributable to chemically aged anthropogenic (53% in the day and 39% in the night) and combustion-derived (17% and 39%) sources in winter and sea salts mixed with dust and vehicular emissions (61% and 52%) during monsoon. These important insights about the sources and formation processes of organic aerosols will help in understanding the formation of atmospheric brown clouds over south Asia.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献