Sulfur forms in bulk soils and alkaline soil extracts of tropical mountain ecosystems in northern Thailand

Author:

Möller A.,Kaiser K.,Kanchanakool N.,Anecksamphant C.,Jirasuktaveekul W.,Maglinao A.,Niamskul C.,Zech W.

Abstract

Sulfur, besides phosphorus, is crucial for the nutrition of plants on tropical soils. Its availability is closely related to the turnover of soil organic matter. To get a better insight into transformation of soil S forms during the decomposition of organic matter, we studied inorganic and organic S pools in bulk samples and alkaline extracts of soils under different land uses representative of the tropical highlands of northern Thailand. Samples were taken from a cabbage cultivation, a Pinus reforestation, a secondary forest, and a primary forest. Total S ranged from 483 549 mg/kg in the subsoil to 1909 376 mg/kg in the organic layers, which is relatively high for tropical soils. The major S component in soil was organic S, comprising 75–99% of total S. Organic S was significantly correlated with total S, organic C, and total N, indicating that there is a close relationship between C, N, and S cycling in soil. C-bonded S was the predominant form in the topsoils (35–99% of total S) but its presence decreased with soil depth. The maximum concentrations of ester SO4-S were found in the A horizons (128 49 mg/kg), whereas the concentrations of inorganic SO4-S were small in all horizons. Compared with the forest site, the cabbage cultivation site was strongly depleted in S. C-bonded S was more depleted than ester SO4-S. A comparison of the S forms in NaOH extracts with S forms in bulk soil and C forms as indicated by 13C-NMR spectroscopy showed (i) that the extracts were very representative of soil organic S fractions and (ii) that ester SO4-S was mainly associated with O-substituted aliphatic C. In contrast, C-bonded S seemed to be connected to more-or-less all C binding types. transformation of soil organic matter, sulfate.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3