Addition of glucose increases the activity of microbes in saline soils

Author:

Elmajdoub Bannur,Marschner Petra,Burns Richard G.

Abstract

Adaptation of soil microbes to salinity requires substantial amounts of energy. We hypothesised that addition of glucose would increase microbial activity and growth and alleviate the negative effect of salinity on microbes. An incubation experiment was conducted with four salinity levels by using one non-saline and three saline soils of similar texture (sandy clay loam), with electrical conductivities (EC1:5) of 0.1, 1.1, 3.1 and 5.2 dS m–1. Glucose was added to achieve five organic carbon concentrations (0, 0.5, 1, 2.5, 5 g C kg–1). Soluble nitrogen (N) and phosphorus (P) were added to achieve a carbon (C) : N ratio of 20 and a C : P ratio of 200 to ensure that these nutrients did not limit microbial growth. A water content of 50% of the water-holding capacity (optimal for microbial activity in soils of this texture) was maintained throughout the incubation. Soil respiration was measured continuously over 21 days; microbial biomass C and available N and P were determined on days 2, 5, 14 and 21. Cumulative respiration was increased by addition of glucose and was reduced by salinity. The percentage decrease in cumulative respiration in saline soils compared with non-saline soil was greatest in the unamended soil and lowest with addition of 5 g C kg–1. At this rate of C addition, the percentage decrease in cumulative respiration increased with increasing salinity level. Microbial biomass C (MBC) concentration on days 2 and 5 was strongly increased by ≥1 g C kg–1 but decreased over time with the strongest decrease at the highest C addition rate. The MBC concentration was negatively correlated with EC at all C rates at each sampling date. Addition of C resulted in N and P immobilisation in the first 5 days. Biomass turnover as a result of depletion of readily available C released previously immobilised N and P after day 5, particularly in the soils with low salinity. This study showed that over a period of 3 weeks, addition of glucose increased microbial activity and growth in saline soils and alleviated the negative impact of salinity on microbes.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3