Preservation of thermal signature of elevated syn-rift heat flow during multiphase extension: a case study from the Duntroon Sub-basin, Great Australian Bight

Author:

Holford Simon,Duddy Ian,Green Paul,Schofield Nick,Hillis Richard,Stoker Martyn

Abstract

Quantifying the thermal histories of rift basins is important for evaluating their resource and CO2 storage potential because temperature controls hydrocarbon generation, and the diagenesis of reservoir rocks. However, in many rift basins, it is difficult to obtain evidence for elevated heat flow accompanying rifting, since paleotemperature data from drilled sections typically record heating related to post-rift burial. Here we integrate geochemical, geophysical and petrophysical data from the Duntroon Sub-basin, Great Australian Bight, that show how strain-migration during multiphase extension can preserve the signature of syn-rift elevated geothermal gradients. During the late Jurassic–early Cretaceous, rifting was focussed along ~ESE-striking normal fault systems in the northern part of the Duntroon Sub-basin. During the late Cretaceous, strain migrated to the southwest through the development of normal faults which accommodated the deposition of Upper Cretaceous strata. The Echidna-1 well was drilled into a basement high, in the footwall of a late Cretaceous fault system, penetrating ~2.5 km of Lower Cretaceous strata. Paleotemperature proxies define an early Cretaceous paleogeothermal gradient of ~60°C km−1, substantially higher than the present-day gradient. Our results indicate that preserved Lower Cretaceous strata were more deeply buried by ~1 km of additional section, which was likely eroded during an episode of mid-Cretaceous exhumation associated with the migrating locus of rifting; this enabled the preservation of thermal signature of elevated syn-rift heat flow. Similar evidence is also observed in the Otway Basin, demonstrating the regional extent of elevated syn-rift heat flow along the southern Australian margin.

Publisher

CSIRO Publishing

Reference13 articles.

1. Allen PA, Allen JR (2013) ‘Basin Analysis: Principles and Application to Petroleum Play Assessment.’ (John Wiley & Sons)

2. Bradshaw BE, Rollet N, Totterdell JM, Borissova I (2003) ‘A Revised Structural Framework for Frontier Basins on the Southern and Southwestern Australian Continental Margin.’ 89 p. (Geoscience Australia Record 2003/03)

3. Focussing exploration in the Otway Basin: understanding timing of source rock maturation.;The APPEA Journal,1997

4. Hantschel T, Kauerauf AI (2009) ‘Fundamentals of Basin and Petroleum Systems Modeling.’ (Springer Science & Business Media)

5. Paleothermal and seismic constraints on late Miocene–Pliocene uplift and deformation in the Torquay Sub-basin, southern Australian margin.;Australian Journal of Earth Sciences,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3