The effect of increased ground-level habitat complexity on mouse population dynamics

Author:

Arthur A. D.,Pech R. P.,Drew A.,Gifford E.,Henry S.,McKeown A.

Abstract

We investigated experimentally the influence of habitat structure on the population dynamics of house mice. Three habitat types were used. In one, dense stands of regenerating cypress pine were felled and left in situ to cover at least 40% of experimental plots, providing high complexity at ground level; in another, dense stands of regenerating pine were left intact, providing low complexity at ground level; in the third, open grassland adjacent to dense stands of regenerating pine also provided low complexity at ground level. Mouse populations occurred at higher densities in felled pine plots compared with both the standing pine and grassland plots, consistent with the hypothesis that the presence of increased habitat complexity at ground level reduced the impact of predation. Even though populations responded to the felled pine, they dropped to very low densities over winter, suggesting that the habitat was still marginal for the persistence of mice, probably due to a lack of food. The results are discussed with reference to their implications for the influence that habitat structure may have on the impact of introduced predators on native species.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3