Chlorophyll fluorescence screening of Arabidopsis thaliana for CO2 sensitive photorespiration and photoinhibition mutants

Author:

Badger Murray R.,Fallahi Hossein,Kaines Sarah,Takahashi Shunichi

Abstract

Exposure of Arabidopsis thaliana (L.) photorespiration mutants to air leads to a rapid decline in the Fv/Fm chlorophyll fluorescence parameter, reflecting a decline in PSII function and an onset of photoinhibition. This paper demonstrates that chlorophyll fluorescence imaging of Fv/Fm can be used as an easy and efficient means of detecting Arabidopsis mutants that are impaired in various aspects of photorespiration. This screen was developed to be sensitive and high throughput by the use of exposure to zero CO2 conditions and the use of array grids of 1-week-old Arabidopsis seedlings as the starting material for imaging. Using this procedure, we screened ~25 000 chemically mutagenised M2 Arabidopsis seeds and recovered photorespiration phenotypes (reduction in Fv/Fm at low CO2) at a frequency of ~4 per 1000 seeds. In addition, we also recovered mutants that showed reduced Fv/Fm at high CO2. Of this group, we detected a novel ‘reverse photorespiration’ phenotype that showed a high CO2 dependent reduction in Fv/Fm. This chlorophyll fluorescence screening technique promises to reveal novel mutants associated with photorespiration and photoinhibition.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3