Detecting and discriminating pyrethroids with chemiresistor sensors

Author:

Cooper James S.ORCID,Hubble Lee J.ORCID,Chow EdithORCID,Sosa-Pintos Andrea,Patel NereusORCID,Chai Roger,Raguse Burkhard

Abstract

Environmental contextRegular insecticide treatments on the interior of aircraft impedes the spread of mosquitos and other pests internationally, but border protection agencies lack effective tools to ensure airlines have complied. We report the first use of chemiresistor sensors to detect and identify insecticide residue on an interior aircraft surface. The method could be developed into a tool that helps lower the risk of vector-borne diseases like malaria entering international ports. AbstractAustralia and other island nations are protected from stowaway pest vectors, like mosquitos, by aircraft disinsection – spraying the airplane interior with an insecticide. It is a simple biosecurity measure that can reduce the spread of malaria, Zika and other mosquito-borne diseases. However, checking airline compliance and the efficacy of the insecticide residue is a difficult task for border protection officials, which requires either a live fly bioassay or off-site laboratory testing. Neither of these methods are ideal for the hectic schedules of airlines. As such, we propose using gold nanoparticle chemiresistor sensor arrays, to detect and identify insecticide residue on the interior surface of aircraft. We have shown that hexanethiol functionalised sensors have a limit of detection of 3 parts per billion (ppb) for permethrin in solution and have a broad dynamic range responding to concentrations up to 1000 ppb. The chemical residues of three different insecticide products were lifted off an interior aircraft surface and identified with an array of seven uniquely functionalised sensors. This is the first ever demonstration of gold nanoparticle chemiresistor sensors being used for the analysis of chemical residues. These sensors have the potential to rapidly check the efficacy of insecticide residues on aircraft surfaces.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3