Alcoholic Fermentation and Malate Metabolism in Rice Germinating at Low Oxygen Concentrations

Author:

Avadhani PN,Greenway H,Lefroy R,Prior L

Abstract

Germinating rice was exposed, in the dark, to low or zero O2 concentrations for 4-5 days by: (1) submergence under 4-5 cm of stagnant solution (3 ppm O2); (2) exposure to a N2 atmosphere; or (3) submergence under solutions flushed with N2. These treatments completely inhibited root growth. Elongation of coleoptiles was stimulated in the stagnant solutions, but not in the N2 treatments. In most experiments, low O2 concentrations resulted in twofold to eightfold increases of malate concentrations in the shoots. Absence of O2 during exposure to H14CO3-, for 30-60 min, inhibited CO2 dark fixation. This inhibition was considerably smaller when seedlings had been raised in N2 rather than in air. Under aerobic conditions during fixation, excised shoots from seedlings raised in N2 fixed more CO2 than shoots from seedlings raised in air. Malate always contained 70% or more of the total fixed 14C, irrespective of the O2 regime during germination and during 14CO2 fixation. Ethanol in stagnant solutions was shown to be formed by the rice seedlings, rather than by bacteria. Ethanol formation during one single day was 20-30-fold greater than the highest recorded amounts of malate in the seedlings. Alcoholic fermentation also responded quickly to changes in aeration regimes, indicating it was an important adaptive factor. Another likely adaptive feature was the high K+ concentration in shoots, even of seedlings grown in the complete absence of O2. It is suggested that these high K+ concentrations have a function in maintaining turgor required for the rapid extension growth of the coleoptiles under low O2 concentrations.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3