Synthesis and Characterization of Two Chiral Pyrrolyl α-Nitronyl Nitroxide Radicals and Determination of their Cytotoxicity and Radioprotective Properties in C6 Cells and Mice under Ionizing Radiation

Author:

Tian Min,Lan Ting,Gao Min,Li Bo,Zhang Gai,Wang Hai-Bo

Abstract

In this study, two chiral nitronyl nitroxyl radicals, L1 and D1, were synthesized and evaluated for their potential radioprotective properties invitro and invivo. We synthesized the new stable nitronyl nitroxide radicals, L1 and D1, according to Ullman’s method, and their chemical structures were characterized using UV-vis absorption, electron spin resonance (ESR), and circular dichroism (CD) spectra. The cytotoxicity of L1 and D1 on C6 glioma cells (C6 cells) was examined using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To study the anti-radiation effects of L1 and D1 on C6 cells, we determined the optical density (OD) values of irradiated C6 cells using the MTT assay. The effects of L1 and D1 on the survival rate of mice after radiation exposure was evaluated. To demonstrate the influence of L1 and D1 pre-treatment on the antioxidant enzyme system, we studied the activities of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GSH) in mouse plasma after exposure to 6.5 Gy gamma radiation. The results showed that L1 and D1 did not have any obvious cytotoxicity at concentrations below 125μgmL−1. Moreover, L1 and D1 had the same cytotoxic effects on C6 cells. L1 and D1 significantly enhanced C6 cell survival after 8, 10, and 12 Gy radiation exposure, and there was no significant difference in the OD values between L1 and D1. The effects of these drugs on mouse survival rates were dose-dependent. Pre-treatment with different concentrations of L1, D1, or WR2721 significantly increased the activity of SOD, CAT, and GSH and significantly decreased the activity of MDA compared with radiation exposure only. In addition, the activities of SOD, CAT, and GSH in the L1 group were higher than those in the D1 group, whereas the activity of MDA was lower. Therefore, L1 and D1 have potential as safe and efficient therapeutic drugs against radiation damage.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3