Uptake of N-(9-Anthroyloxy) Fatty Acid Fluorescent Probes Into Lipid Bilayers

Author:

A Haigh Elizabeth,R Thulborn Keith,W Nichol Lawrence,H Sawyer William

Abstract

A description in thermodynamic terms is given of ligand-membrane interaction which may occur by either or both a binding and a partition process. Results obtained by fluorescence enhancement and polarization techniques on the uptake of n-(9-anthroyloxy) fatty acids by phospholipid bilayers are analysed to show that binding rather than partition effects primarily determine the extent of probe uptake. Liposome concentration-dependence effects are also reported which required that binding results obtained with different probes be compared at fixed lipid concentrations. On this basis it is concluded that as the separation of the anthracene and carboxyl groups within the fatty acid molecule is increased, and hence as the anthracene group moves deeper into the bilayer, the fluorescent probe is bound to the bilayer with greater affinity but is accepted by fewer binding sites within the membrane. Studies on probe uptake at high ionic strength and into negatively charged bilayers indicate that hydrophobic rather than electrostatic interactions make the dominant contribution to the free energy of binding.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,General Materials Science,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,General Medicine,Biotechnology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3