Degradation of UV filters 2-ethylhexyl-4-methoxycinnamate and 4-tert-butyl-4'-methoxydibenzoylmethane in chlorinated water

Author:

Santos A. Joel M.,Crista Diana M. A.,Miranda Margarida S.,Almeida Isabel F.,Sousa e Silva José P.,Costa Paulo C.,Amaral Maria H.,Lobão Paulo A. L.,Sousa Lobo José M.,Esteves da Silva Joaquim C. G.

Abstract

Environmental context The increasing use of sun-creams containing UV-filtering chemicals has led to increased inputs of these compounds to the aquatic environment. Chlorinated waters can convert these chemicals into chlorinated products whose toxic effects are of primary concern. To better understand the environmental fate of sun-cream chemicals, we studied the stability of two UV-filtering compounds under varying conditions of pH, chlorine concentration, temperature, dissolved organic matter and solar irradiation. Abstract The stability of the UV filters 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-tert-butyl-4′-methoxydibenzoylmethane (BDM) in chlorinated water was studied. High-performance liquid chromatography (HPLC)-UV-diode array detection (DAD) was used to follow the reaction kinetics of both UV filters and HPLC-tandem mass spectrometry (MS/MS) was used to tentatively identify the major transformation by-products. Under the experimental conditions used in this work both UV filters reacted with chlorine following pseudo-first order kinetics: rate constant k=0.0095±0.0007min–1 and half-life t1/2=73±4min for EHMC and rate constant k=0.006±0.001min–1 and half-life t1/2=119±14min for BDM (mean±standard deviation). The chemical transformation of the UV filters in chlorinated water led to the formation of chlorinated by-products that were tentatively identified as mono- and dichloro-substituted compounds that resulted from substitution of the hydrogen atoms in the benzene rings by one or two chlorine atoms. Experimental Box–Behnken designs were used to assess the effect of experimental factors: pH, temperature, chlorine concentration, dissolved organic matter and artificial sunlight irradiation on the transformation of the UV filters.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3