New Bidentate N-Sulfonyl-Substituted Aromatic Amines as Chelate Ligand Backbones: Pd Catalyst Generation in C–C Coupling via In Situ and Precatalyst Modes

Author:

Oloyede Hammed Olawale,Akong Akong Raymond,Woods Joseph Anthony Orighomisan,Görls Helmar,Plass WinfriedORCID,Eseola Abiodun OmokehindeORCID

Abstract

A series of six new, bidentate ligands based on N-(2-(R-sulfonamido)benzyl)R-sulfonamide have been isolated as dianionic or monoanionic chelators via condensation of 2-(aminomethyl)aniline with sulfonyl chloride reagents; R=methyl (1 and 1′), tolyl (2 and 2′), 2,4,6-trimethylphenyl (3), or 2,4,6-triisopropylphenyl (4). Complexes of ligands 2–4 reacted at room temperature with palladium(ii) acetate in the presence of various monodentate N-donor co-ligands to form complexes Pd2(2dmap), Pd2′(OAc.py), Pd3(2acn), Pd3(2py), Pd4(2acn), and Pd4(2py), which were structurally confirmed by three X-ray crystal analyses. Results of catalysis studies in water showed high turnover frequencies and yields of up to 98% within 10min and at 0.2 mol-% palladium catalyst loading. Relative to ligand-free catalysis in the presence of only Pd(OAc)2, the ligand-supported palladium species clearly possess positive catalytic advantage. Furthermore, Suzuki coupling efficiencies by 1:1 ‘Pd(OAc)2+ligand’ yielded notably better outcomes than for the 1:2 ‘Pd(OAc)2+ligand’ insitu catalyst generation, which reveals that coordinative saturation is undesirable. The size of the complementing monodentate co-ligand was observed to influence the catalytic efficiency such that bulkier co-ligands consistently yielded improved turnover frequency values, which leads to the conclusion that steric repulsion between the synthesised ligands and the bulkier co-ligands aided the generation of vacant coordination sites for the more active complexes. Moderate Heck coupling activity was recorded for the complexes and better activities appear to correlate with moderate bulkiness of ligand 3.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3